PRECALCULUS I/MATH 126 (2550)

SHANNON MYERS

105
π TVO PO INTS POSSIBLE
π yo $\mathcal{T O} \mathcal{B E} \mathfrak{A W} \mathcal{A R D E D}$
π YOUMAY USE $\mathfrak{A} \operatorname{SCIEN(IIFIC~} \mathfrak{A N D}$ (ORATI-83/84/85/86 CALCULATOR
π PROVIDE EXACT ANS WERS UNLEESS OTHERWISEINDICATED

 $\mathcal{N} O \mathcal{B A T H} \mathcal{H} O$ O $\mathcal{M} \operatorname{BREAKS}!$

NAME_Key
1|

1. (6 POINTS) Let $g(x)=(x-3)^{2}+1$.

$$
\begin{aligned}
& \text { a. (3 POINTS) Find the average rate of change from }-2 \text { to } 1 \text {. } \\
& \begin{array}{l}
\text { a. (3 POINTS) Find the average rate of change from -2 to } 1 . \\
g(-2)=[(-2)-3]^{2}+1\left|\begin{array}{l}
g(1)=[(1)-3]^{2}+1 \\
g(1)=(-2)^{2}+1
\end{array}\right| \text { Average rate of change }=\frac{g(1)-g(-2)}{1-(-2)}
\end{array} \\
& g(-2)=(-5)^{2}+1 \\
& g(1)=(-2)^{2}+1 \\
& g(1)=5 \\
& g(-2)=26 \\
& \text { b. (3 POINTS) Find an equation of the secant line containing }(-2, g(-2)) \text { and }(1, g(1)) \text {. Give your result } \\
& =\frac{5-26}{3} \\
& =-21 / 3 \\
& =-7
\end{aligned}
$$

$$
\begin{array}{ccc}
\text { in the point-slope form of the line. } & (1,5): & (-2,26): \\
m_{\text {sec }}=\text { average rat of change }=-7
\end{array} \quad y-y_{1}=m\left(x-x_{1}\right) \text { or } \begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-26=-7(x-(-2)) \\
& y-5=-7(x-1)
\end{aligned}
$$

2. (6 POINTS) Use a graphing calculator to approximate the real solutions, if any, of the given equation rounded to two decimal places. All solutions lie between -10 and 10 .

$$
-2 x^{4}+9=3 x-2
$$

$$
\{-1.68,1.36\}
$$

3. (8 POINTS) The function below is defined by three equations. Find the indicated function values.

$$
f(x)=\left\{\begin{array}{rl}
-x-4 & \text { if } x<1 \\
3 \text { if } x=1 \\
1-x^{2} & \text { if } x \geq 1 \\
2 & f(4)=3 \\
\hline
\end{array}\right.
$$

a. $f(1)=$ \qquad 3
c. $f(0)=$ \qquad
b. $f(4)=-15$
d. $2 f(1)+f(0)=2(3)+(-4)$ 2

$$
=2
$$

4. (8 POINTS) Find the difference quotient of f; that is, find $\frac{f(x+h)-f(x)}{h}, h \neq 0$, for the following function.

$$
f(x)=\frac{1}{x}
$$

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\left[\frac{(1)}{\left.(x+h) \cdot \frac{x}{x}-\frac{(17(x+h)}{(x)}(x+h)\right] \frac{1}{h} \quad \begin{array}{c}
\text { common } \\
\text { denominator }
\end{array}}\right.
\end{aligned}
$$

$$
=\frac{x-(x+h)}{h x(x+h)}
$$

$$
=\frac{-h}{h_{x}(x+h)}
$$

5. (9 POINTS) If a rock falls from a height of 50 meters on Earth, the height H in meters after x seconds is approximately $H(x)=50-4.9 x^{2}$. Round your answers to three decimal places. Give the appropriate units with your answers.

a)

a. What is the height of the rock when $x=1.2$ seconds?
42.944 meters
c)

b) $\underset{\substack{Y_{1} \\ N Y_{2} \\ 2020}}{ }$
$-1 Y_{2} 22 \mathrm{I}$
-…
c. When does the rock hit the ground? \qquad 3.194 seconds
 Is y a function of x ? Circle one response:

Fails since
it papes through more than one point
7. (6 POINTS) Complete the graph so that the graph is symmetric with respect to the:
a. Origin

b. x-axis

c. y-axis

8. (6 POINTS) The function f is defined as follows: $f(x)=\operatorname{int}(x)$.
a. (3 POINTS) Graph the function. Be sure to label axes and scale.
b. (2 POINTS) What is the domain? ($-\infty, \infty)$
c. (1 POINTS) ls f continuous on its domain?_No
(discontinuity at every integer)

9. (4 POINTS) Give the domain of $f(x)=\frac{x-1}{x^{2}-1}$ in interval notation.

$$
\begin{aligned}
& f(x)=\frac{x-1}{x^{2}-1} \rightarrow f(x)=\frac{x-1}{(x+1)(x-1)} \rightarrow f(x)=\frac{1}{x+1}, x \neq 1 \\
& \text { so } x \neq 1 \text { and } x+1 \neq 0 \rightarrow x \neq-1
\end{aligned}
$$

$$
(-\infty,-1) \cup(-1,1) \cup(1, \infty)
$$

10. (9 POINTS) Graph $g(x)=2 \sqrt{x+1}$ by hand using transformations. Fill in the blanks below to indicate the first two graphs.

$$
y_{1}=\sqrt{x}
$$

\qquad

$$
y_{2}=\sqrt{x+1}
$$

$$
g(x)=2 \sqrt{x+1}
$$

11. (10 POINTS) A rectangle is inscribed in a circle of radius 2.5 cm . Let $P=(x, y)$ be the point in quadrant I that is a vertex of the rectangle and is on the circle.
a. (4 POINTS) Express the area A of the rectangle as a function of x.

b. (1 POINT) Graph $A=A(x)$. For what value of x is A largest? _1. 768 cm
c. (4 POINTS) Express the perimeter p of the rectangle as a function of x.

$$
\begin{aligned}
& p(x, y)=2[2 x+2 y]=4(x+y) \\
& p(x)=4\left(x+\sqrt{6.25-x^{2}}\right)
\end{aligned}
$$

 equation $x^{2}+y^{2}=6.25$ circle w/radius 2.5
d. (1 POINT) Graph $p=p(x)$. For what value of x is p largest? _ $\chi \approx 1,768 \mathrm{~cm}$ 5|

12. (1/ $/$ POINTS) Consider the graph of $f(x)$ below.

a. For what values) of x is $f(x)$ equal to 0 ? $x=-24,-4,16$
b. $f(0)=-3$
c. On what interval (s) is f increasing? $(-28,-12) \cup(8,24)$
d. On what interval(s) is f decreasing? $(-12,8)$
e. What is the domain of f ? $[-28,24]$
f. What is the range of f ? $[-6,9]$
g. For what values of x is $f(x) \geq 6 ?[-19,-8] \cup\{24\}$
h. What is the absolute minimum? \qquad
i. What is the absolute maximum? \qquad
13. (2 POINTS) Write the function for $f(x)=x^{3}$ which has been shifted 2 units up and 6 units to the left.

$$
g(x)=(x+6)^{3}+2
$$

14. (2 POINTS) If $(-1,2)$ is a point on the graph of $y=f(x)$, what point of the following must be on the graph of $y=3 f(x)$?

$$
(-1,6)
$$

A B
C
15. (7 POINTS) Determine if the triangle with vertices $(-3,3),(1,4)$, and $(2,0)$ is a right triangle.
$m_{\overline{A B}}=\frac{4-3}{1-(-3)}=\frac{1}{4}$
$m_{\overline{A C}}=\frac{0-3}{2-(-3)}=-\frac{3}{5}$
$m_{\overline{B C}}=\frac{0-4}{2-1}=-4$
$O R$

$$
\begin{aligned}
d_{\overrightarrow{A B}} & =\sqrt{\left(1-(-3)^{2}+(4-3)^{2}\right.} \\
& =\sqrt{17} \text { units } \\
d_{\widehat{A C}} & =\sqrt{(2-(-3))^{2}+(0-3)^{2}} \\
& =\sqrt{34} \text { units }
\end{aligned}
$$

since one pair of slopes has a product of -1 (are negative reciprocals of each other), $\triangle A B C$

$$
\begin{aligned}
& \text { is a right } \Delta \\
& \begin{aligned}
d_{\overline{B C}} & =\sqrt{(2-1)^{2}+(0-4)^{2}} \\
& =\sqrt{17} \text { units }
\end{aligned}
\end{aligned}
$$

16. (3 POINTS) Determine the viewing window used.

a. $\quad X \min =-20$
b. $\quad \mathrm{mmax}=20$
c. $\mathrm{XsCl}=\ldots$ _
d. $Y \min =-4$
e. $Y m a x=$
f. $\mathrm{YsCl}=\ldots$
